New To Mac-Forums?

Welcome to our community! Join the discussion today by registering your FREE account. If you have any problems with the registration process, please contact us!

Get your questions answered by community gurus • Advice and insight from world-class Apple enthusiasts • Exclusive access to members-only contests, giveaways and deals

Join today!

Start a Discussion

Mac-Forums Brief

Subscribe to Mac-Forums Brief to receive special offers from Mac-Forums partners and sponsors

Join the conversation RSS
Schweb's Lounge Forum for general conversation, chit chat, or most topics that don't fit in another forum.

Fermi's Tevatron finds clues to the reason for existence

Post Reply New Thread Subscribe

Thread Tools

Member Since: Apr 09, 2009
Location: Ithaca NY
Posts: 2,073
DarkestRitual is just really niceDarkestRitual is just really niceDarkestRitual is just really niceDarkestRitual is just really nice
Mac Specs: 13 inch alMacBook 2GHz C2D 4G DDR3, 1.25GHz G4 eMac

DarkestRitual is offline
Fermi's Tevatron finds another bias against antimatter

We tend to view antimatter as exotic and unstable, prone to annihilation when it combines with the vast excess of normal matter present in our Universe. But it didn't have to be that way; most behavior of subatomic particles shows no preference for matter over antimatter, and calculations suggest the two should have been produced in roughly equal proportions during the Big Bang. Figuring out why we live in a matter-filled Universe has been one of the nagging questions facing physicists.

Over the last couple of decades, a few cases of what are called C-P violations have been identified. These are cases where a particle decay that should, in theory, produce equal amounts of antimatter and matter, doesn't. These few instances, however, don't occur with sufficient frequency to explain why the Universe has its current abundance of regular matter. That has kept physicists looking and, this morning, Fermilab announced that research performed in its Tevatron accelerator has provided strong evidence for another C-P violation.

Fermi has posted a copy of a paper that has been submitted for publication in Physical Review D, which means that the paper hasn't been through peer review yet. The huge number of authors (it takes nearly three pages to list them all and their affiliations) suggests that there's a reasonable chance that one of them might have caught any errors. In addition, the analysis simply involves performing a new analysis of several years' worth of data obtained by the DZero collaboration at Fermi.

The outline of the work is about the only thing that's simple about it. It takes 19 pages and 67 equations to describe the numbers that were crunched to produce the new result—and that's not including the seven pages of appendix and references. The plan was to follow up on early hints of an asymmetry in the decay of a set of particles called B-mesons that are formed by a bottom quark (or antiquark) and one of any of a number of additional quarks (or antiquarks).

The neutral forms of these B-mesons undergo a process called "flavor oscillation," in which they rapidly shift between their matter and antimatter forms. We can't directly observe these changes given their short lifespan, but we can detect their impact in the decay particles. B-mesons can decay into pairs of muons or antimuons depending on their current state. By looking at the relative numbers of paired muons and antimuons that are produced from individual decays, the authors can calculate whether there is an excess of the matter version of B-mesons around. (As the paper puts it, the authors searched the data for "like-sign dimuon events, with one muon arising from direct semileptonic b-hadron decay.")

Right about now would be a good time to refer to our guide to particle colliders if you're not sure how these detectors work.

The challenge isn't one of spotting muons, so much as it is that we've spotted way too many muons, along with a host of other particles, like pions, that sometimes look a lot like a muon from the detector's perspective. So, a huge chunk of the paper's body is devoted to describing how to focus in specifically on the events that are likely to be informative.

Some of these were controlled at the hardware level. For example, the polarity of the magnets in the detector were reversed every few months to ensure that any bias in the equipment ended up balanced out. Specific energy levels and tracks were selected, meaning that the vast majority of the data picked up by the detector was thrown out before the analysis took place. Different approaches were used to pick out cases where another particle like a pion or kaon created a track through the detector that looked like a muon's. In the end, the filtering process left them with 3.73 million di-muon events with identical signs.

Each one of these steps introduced a degree of error into the calculations, however. Fortunately, the calculations produced two different measures of uncertainty that were distinct but related; that relationship enabled the authors to combine them in a way that significantly lowered the overall uncertainty. In the end, they came up with an asymmetry measurement of −0.00957 ± 0.00251 (statistical) ± 0.00146 (systemic). That may not look very exciting, but it's over three standard deviations away from the value predicted by the Standard Model, which means that the probability of this occurring by chance is less than one-tenth of one percent. Symmetry is apparently being broken in these decays.

Just to make sure you're convinced, the authors go on to describe 16 different consistency checks they performed on the results. They passed.

So, we can add another situation where basic physics appears to favor the production of matter over antimatter. It may take a little while for cosmologists to tell us whether that's enough to balance the books on the Universe, but the results already tell us something about particle physics.

For starters, the B-meson doesn't require especially high energies to produce; it's been within the range of particle detectors for a while. But detecting this sort of tenuous bias requires producing lots and lots of them. For Fermi, that required running the accelerator for years. Thanks to the LHC, we should be able to get an independent confirmation much sooner, simply because the luminosity—the number of collisions per unit time—is much, much higher.

From that, we can also conclude that the excitement over the chance to see new particles at higher energies is only part of the allure of the LHC. There may be entirely new physics lurking among the particles we're already aware of, just waiting for us to look at enough of them.
QUOTE Thanks

Member Since: Apr 09, 2009
Location: Ithaca NY
Posts: 2,073
DarkestRitual is just really niceDarkestRitual is just really niceDarkestRitual is just really niceDarkestRitual is just really nice
Mac Specs: 13 inch alMacBook 2GHz C2D 4G DDR3, 1.25GHz G4 eMac

DarkestRitual is offline
For real? Nobody here cares enough about why we aren't winked out of existence to comment on some pretty cool advances in particle physics?
QUOTE Thanks

Post Reply New Thread Subscribe

« My Mac leetness saved some girl's sister's wedding today | Steam for mac released »
Thread Tools

Currently Active Users Viewing This Thread: 1 (0 members and 1 guests)
Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts
BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are Off
Forum Jump

All times are GMT -4. The time now is 04:43 AM.

Powered by vBulletin
Copyright ©2000 - 2015, Jelsoft Enterprises Ltd.

Welcome to

Create your username to jump into the discussion!

New members like you have made this community the ultimate source for your Mac since 2003!

(4 digit year)

Already a member?